T.Y.B.Sc. CHEMISTRY (6 UNITS)

Choice Based Credit System

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCH502

CREDITS: 02

LECTURES: 60

UNIT-I	L/Week
1. Molecular Symmetry and Chemical Bonding	
1.1Molecular Symmetry(6L)	
1.1.1 Introduction and Importance of Symmetry in Chemistry.	
1.1.2 Symmetry elements and Symmetry operations.	
1.1.3 Concept of a Point Group with illustrations using the	
following point groups :(i) $C_{\infty V}$ (ii) $D_{\infty h}$ (iii) C_{2V} (iv) C_{3v}	
$(v)C_{2h}$ and $(vi)D_{3h}$	
1.2 Molecular Orbital Theory for heteronuclear diatomic	
molecules and polyatomic species (9L)	
1.2.1 Comparision between homonuclear and heteronuclear	
diatomic molecules.	
1.2.2. Heteronuclear diatomic molecules like CO, NO and HCl,	
appreciation of modified MO diagram for CO.	
1.2.3 Molecular orbital theory for H_3 and H_3^+ (correlation	
diagram expected).	
1.2.4. Molecular shape to molecular orbital approach in AB_2	
molecules. Application of symmetry concepts for linear and	
angular species considering σ - bonding only.	
(Examples like : i) BeH ₂ , ii) H ₂ O).	
UNIT-II	
2 SOLID STATE CHEMISTRY	
2.1 Structures of Solids (11L)	
2.2.1 Explanation of terms viz.crystal lattice, lattice point, unit cell	
and lattice constants.	
2.1.2 Closest packing of rigid spheres (hcp,ccp), packing density in	
simple cubic, bcc and fcc lattices. Relationship between	
density, radius of unit cell and lattice parameters.	

2.1.3 Stoichiometric Point defects in solids (discussion or	Frenkel
and Schottky defects expected).	
2.2 Superconductivity	(4L)
2.2.1 Discovery of superconductivity.	
2.2.2 Explanation of terms like superconductivity, transiti	on
temperature, Meissner effect.	
2.2.3 Different types of super conductors viz.conventiona	1
superconductors, alkali metal fullerides, high tempe	
super conductors.	
2.2.4 Brief application of superconductors.	
UNIT-III	
3.0 CHEMISTRY OF INNER TRANSITION ELEME (15L)	INTS
3.1 Introduction: Position in periodic table and electron	ic
configuration of lanthanides and actinides.	
3.2 Chemistry of Lanthanides with reference to (i) lan	thanide
contraction and its consequences(ii) Oxidation states ((iii)
Ability to form complexes (iv) Magnetic and spectral	
properties	
3.3 :Occurrence, extraction and separation of lanthanides	by (i) Ion
Exchange method and (ii) Solvent extraction method	1
(Principles and technique)	
3.4 Applications of lanthanides	
UNIT-IV	
4. SOME SELECTED TOPICS	
4.1 Chemistry of Non-aqueous Solvents	(5 L)
4.1.1Classification of solvents and importance of non-aqu	ieous
solvents.	
4.1.2 Characteristics and study of liquid ammonia, dinitro	-
oxide as non-aqueous solvents with respect to : (i) a	acid-base
reactions and (ii) redox reactions.	
4.2 Comparative Chemistry of Group 16	(5L)
4.2.1 Electronic configurations, trends in physical propert	ies,
allotropy	
4.2.2 Manufacture of sulphuric acid by Contact process.	
4.3 Comparative Chemistry of Group 17 (5L)	
4.3.1Electronic configuration, General characteristics, an	
properties of fluorine, comparative study of acidity of	
oxyacids of chlorine w.r.t acidity, oxidising propertie	es and
structures(on the basis of VSEPR theory)	
4.3.2 Chemistry of interhalogens with reference to prepar	
properties and structures (on the basis of VSEPR th	eory).

REFERENCES

SEM-V

Unit-I

- 1. Per Jensen and Philip R. Bunker, Fundamentals of Molecular Symmetry, Series in Chemical Physics, Taylor & Francis Group
- 2. J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press
- 3. Derek W. Smith, Molecular orbital theory in inorganic chemistry Publisher: Cambridge University Press
- C. J. Ballhausen, Carl Johan Ballhausen, Harry B. Gray Molecular Orbital Theory: An Introductory Lecture Note and Reprint Volume Frontiers in chemistry Publisher W.A. Benjamin, 1965
- 5. Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 6. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

Unit-II

- 1. Lesley E. Smart, Elaine A. Moore Solid State Chemistry: An Introduction, 2nd Edition CRC Press,
- 2. C. N. R. Rao Advances in Solid State Chemistry
- 3. R.G. Sharma Superconductivity: Basics and Applications to Magnets
- 4. Michael Tinkham ,Introduction to Superconductivity: Vol I (Dover Books on Physics)
- 5. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 6. Richard Harwood, Chemistry, Cambridge University Press,
- 7. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd .

Unit-III

- 1. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 3. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 4. G. Singh, Chemistry of Lanthanides and Actinides, Discovery Publishing House
- 5. Simon Cotton, Lanthanide and Actinide Chemistry Publisher: Wiley-Blackwell

Unit-IV

1. B. H. Mahan, University Chemistry, Narosa publishing.

- 2. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 3. J. D. Lee, Concise Inorganic Chemistry, 4thEdn., ELBS,
- 4. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 5. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 6. Gary Wulfsberg, Inorganic chemistry, Viva Books Pvt, Ltd. (2002).
- 7. Richard Harwood, Chemistry, chapter 10 Industrial inorganic chemistry
- 8. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 9. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993
- Satya Prakash, G.D.Tuli, R.D. Madan, Advanced Inorganic Chemistry.S. 10. Chand & Co Ltd 2004

Practicals

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCHP05

Course USCH502: Inorganic Practicals (60L)

I. **Inorganic preparations**

- 1. Preparation of Potassium diaquobis- (oxalato)cuprate (II)
- 2. Preparation of Ferrous ethylene diammonium sulphate.
- 3. Preparation of bisacetylacetonatocopper(II)

II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of transition metal ions)

Reference Books (practicals)

1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.

CREDITS: 02

- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCH602

CREDITS: 02

LECTURES: 60

COURSE CODE	CREDITS	
USCH602	(60 Lectures)	
(Numericals and word problems are expected)		
UNIT-I		L/week
1.Theories of the metal-ligand bond (l	(15L)	
1.1 Limitations of Valence Bond Theory	/.	
1.2 Crystal Field Theory and effect of c	rystal field on central metal	
valence orbitals in various geometrie	es from linear to	
octahedral(from coordination numb	er 2 to coordination number	
6)		
1.3 Splitting of <i>d</i> orbitals in octahedral,	square planar and tetrahedral	
crystal fields.		
1.4 Distortions from the octahedral geor		
field and (ii) Jahn-Teller distortions.		
1.5 Crystal field splitting parameters Δ ;		
affecting it in octahedral complexes,		
1.6 Crystal field stabilization energy(CFSE), calculation of CFSE for		
octahedral complexes with d ⁰ to d ¹⁰	ě	
1.7 Consequences of crystal field splitting		
as ionic radii, hydration energy and	-	
metal complexes of the first transition		
1.8 Limitations of CFT : Evidences for a	1 .	
(i) intensities of d-d transitions, (ii) l	ESR spectrum of $[IrCl_6]^{2-1}$	
(iii) Nephelauxetic effect.		
UNIT-II		
2.Theories of the metal-ligand bond (l	•	
2.1 Molecular orbital Theory for coor	dination compounds. (4L)	

2.1.1 Identification of the central metal orbitals and their symmetry
suitable for formation of σ bonds with ligand orbitals.
2.1.2 Construction of ligand group orbitals.
2.1.3 Construction of σ -molecular orbitals for an ML ₆ complex.
2.1.4 Effect of π -bonding on complexes .
2.1.5 Examples like $[FeF_6]^{-4}$, $[Fe(CN)_6]^{-4}$, $[FeF_6]^{-3}$, $[Fe(CN)_6]^{-3}$,
$[CoF_6]^{-3}, [Co(NH_3)_6]^{+3}$
2.2 Stability of Metal-Complexes (4L)
2.2.1 Thermodynamic and kinetic perspectives of metal complexes
with examples.
2.2.2 Stability constants: stepwise and overall stability constants and their interrelationship.
2.2.3 Factors affecting thermodynamic stability.
2.3 Reactivity of metal complexes. (4L)
2.3.1 Comparison between Inorganic and organic reactions.
2.3.2 Types of reactions in metal complexes.
2.3.3 Inert and labile complexes : correlation between electronic
configurations and lability of complexes.
2.3.4 Ligand substitution reactions : Associative and Dissociative
mechanisms.
2.2.5 Acid hydrolysis, base hydrolysis and anation reactions.
2.4 Electronic Spectra.(3L)
2.4.1Origin of electronic spectra
2.4.2 Types of electronic transitions in coordination compounds:
1 + 1 + 1 = 1 = 0
intra- ligand, Charge transfer and intra-metal transitions.
2.4.3 Selection rules for electronic transitions.
2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and
2.4.3 Selection rules for electronic transitions.2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination
 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term.
 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations.
2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III
2.4.3 Selection rules for electronic transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L)
2.4.3 Selection rules for electronic transitions. 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L)
2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic
 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient
 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds.
 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i)
2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal
2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-halide exchange,
2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-halide exchange, (iv) Metal-hydrogen exchange(metallation) and (v) Methylene-
2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term. 2.4.5 Determination of Terms for p ² and d ¹ electronic configurations. UNIT-III 3 ORGANOMETALLIC CHEMISTRY (15L) 3.1 Organometallic Compounds of main group metal (6L) 3.1.1General characteristics of various types of organometallic compounds, viz.ionic, σ-bonded and electron deficient compounds. 3.1.2 General synthetic methods of organometallic compounds : (i) Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-halide exchange,

(i) Reactions with oxygen and halogens, (ii) Alkylation and	
arylation reactions (iii) Reactions with protic reagents, (iv)	
Redistribution reactions and (v) Complex formation reactions	•
3.2 Metallocenes (5L)	
Introduction, Ferrocene : Synthesis, properties, structure and	
bonding on the basis of VBT.	
3.3 Catalysis (4L)	
3.3.1 Comparison between homogeneous and heterogeneous	
catalysis	
3.3.2 Basic steps involved in homogeneous catalysis	
3.3.3 Mechanism of Wilkinson's catalyst in hydrogenation of	
alkenes.	
UNIT-IV	
4 SOME SELECTED TOPICS (15L)	
4.1 Metallurgy (7L)	
4.1.1 Types of metallurgies,	
4.1.2 General steps of metallurgy; Concentration of ore,	
calcinations, roasting, reduction and refining.	
4.1.3 Metallurgy of copper: occurrence, physicochemical principles	,
Extraction of copper from pyrites& refining by electrolysis.	
4.2 Chemistry of Group 18 (5L)	
4.2.1 Historical perspectives	
4.2.2 General characteristics and trends in physical and chemical	
properties	
4.2.3 Isolation of noble gases	
4.2.4 Compounds of Xenon (oxides and fluorides) with respect to	
preparation and structure (VSEPR)	
4.2.5 Uses of noble gases	
4.3 Introduction to Bioinorganic Chemistry. (3L)	
4.3.1Essential and non essential elements in biological systems.	
4.3.2 Biological importance of metal ions such as $Na^+, K^+, Fe^{+2}/Fe^{+3}$	
and Cu^{+2} (Role of Na ⁺ and K ⁺ w.r.t ion pump)	
	I

References.

Unit-I:

- 1. Geoffrey A. Lawrance Introduction to Coordination Chemistry John Wiley & Sons.
- 2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
- 3. R. Gopalan , V. Ramalingam Concise Coordination Chemistry , Vikas Publishing House;
- 4. Shukla P R, Advance Coordination Chemistry , Himalaya Publishing House
- 5. Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: Thomson Brooks/Cole

Unit-II:

- 1. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers,
- 2. Basolo, F, and Pearson, R.C., Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY,
- 3. Twigg ,Mechanisms of Inorganic and Organometallic Reactions Publisher: Springer
- 4 R.K. Sharma Inorganic Reaction Mechanisms Discovery Publishing House
- 5 M. L. Tobe Inorganic Reaction Mechanisms Publisher Nelson, 1972

Unit-III:

- 1 Cotton, Wilkinson, Murillo and Bochmann, Advanced **Inorganic Chemistry**, 6th Edition..
- 2 H.W. Porterfield, Inorganic Chemistry, Second Edition, Academic Press, 2005
- 3 Purecell, K.F. and Kotz, J.C., Inorganic Chemistry W.B. Saunders Co. 1977.
- 4 Robert H. Crabtree ,The Organometallic Chemistry of the Transition Metals, Publication by John Wiley & Sons
- 5 B D Gupta & Anil J Elias Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University press
- 6 Ram Charan Mehrotra, Organometallic Chemistry: A Unified Approach, New Age International.

Unit-IV

- 1 R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 2 D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 3 Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 4 Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 5 R.Gopalan, Chemistry for undergraduates. Chapter 18. Principles of Metallurgy.(567-591)
- 6 Puri ,Sharma Kalia Inorganic chemistry. Chapter 10, Metals and metallurgy.(328-339)

- 7 Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 8 Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 9 Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.
- 10 Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

PRACTICALS

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCHP06

CREDITS: 02

I. Inorganic preparations

- 1. Preparation of Tris(acetylacetonato) iron(III)
- 2. Green synthesis of bis(dimethylglyoximato) nickel(II) complex using nickel carbonate and sodium salt of dmg.
- 3. Preparation of potassium trioxalato aluminate (III)
- II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of main group metal ions)

Reference Books (practicals)

- 4. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 6. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.